首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330533篇
  免费   29164篇
  国内免费   19649篇
电工技术   22303篇
技术理论   55篇
综合类   42939篇
化学工业   32899篇
金属工艺   13011篇
机械仪表   18376篇
建筑科学   54150篇
矿业工程   21645篇
能源动力   9878篇
轻工业   16779篇
水利工程   18433篇
石油天然气   19674篇
武器工业   3818篇
无线电   20805篇
一般工业技术   23756篇
冶金工业   17920篇
原子能技术   3321篇
自动化技术   39584篇
  2024年   470篇
  2023年   3076篇
  2022年   6194篇
  2021年   7929篇
  2020年   8499篇
  2019年   7023篇
  2018年   6527篇
  2017年   8214篇
  2016年   9758篇
  2015年   10804篇
  2014年   19228篇
  2013年   17456篇
  2012年   22995篇
  2011年   24430篇
  2010年   19134篇
  2009年   19834篇
  2008年   18380篇
  2007年   23624篇
  2006年   22305篇
  2005年   19591篇
  2004年   16620篇
  2003年   14727篇
  2002年   12157篇
  2001年   10237篇
  2000年   8556篇
  1999年   7029篇
  1998年   5330篇
  1997年   4604篇
  1996年   4353篇
  1995年   3716篇
  1994年   3253篇
  1993年   2386篇
  1992年   2089篇
  1991年   1514篇
  1990年   1348篇
  1989年   1160篇
  1988年   895篇
  1987年   616篇
  1986年   475篇
  1985年   378篇
  1984年   355篇
  1983年   254篇
  1982年   221篇
  1981年   197篇
  1980年   194篇
  1979年   162篇
  1978年   64篇
  1977年   75篇
  1959年   69篇
  1955年   60篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
《Soils and Foundations》2022,62(3):101154
In this study, the side capacity of drilled shaft foundations is estimated from partially-mobilized load–displacement field data using a new method in the extrapolation of load–displacement response. A dataset of 138 bi-directional load tests is used to evaluate the degree of mobilization of unit side resistance. A total of 612 unit side-resistance curves obtained from measured strain gauge recordings are utilized in this study. The proposed extrapolation approach is based on a new technique, the Double Tangent method, characterizing the extent of mobilization for each unit side-resistance curve. Roughly, 12% of the dataset exhibits a fully-mobilized load–displacement response, with the remainder exhibiting varying degrees of a partially-mobilized response. Fully-mobilized records are further characterized using the Double Tangent method over different ranges of mobilization, resulting in four regression models based on predominant soil types. Each model is assessed statistically, and a global regression model is found suitable to predict maximum unit side resistance. The global model is further validated using two independent load test datasets, comparing measured values of unit side resistance against predicted values. The model is then used to predict maximum unit side resistance for all partially-mobilized data within the dataset, and the results are compared to two extrapolation techniques currently used in practice. The corresponding resistance-displacement response is extrapolated using a proposed asymptotic curve-fitting function for side resistance, and an example extrapolation is illustrated to showcase how the proposed method can be used in engineering practice.  相似文献   
32.
《Soils and Foundations》2022,62(5):101206
Coral sand is one kind of the important building materials in coral reef engineering practice. The use of cement as a stabilizing agent can significantly improve the mechanical properties of coral sands and is widely applied in the subbase engineering construction in coral reef islands. Cement-stabilized coral sand structures may contain high contents of fine coral particles and salinity because of the high crushability of coral sands and the existence of seawater surrounding them. In this study, the effects of coral sand powders and seawater salinity on the dynamic mechanical properties of cemented coral sand (CCS) were investigated through the split Hopkinson pressure bar (SHPB) tests and Scanning Electron Microscope (SEM) analysis. It was found that the strength (i.e., the peak stress) of CCS specimens increased firstly and then decreased with the increase of powder content. The specimens reached the maximum peak stress when 3% powder content was included. The initial improvement of CCS strength was attributed to the pore-filling effect of coral powders, namely, the micro pores of the CCS specimens could be more effectively filled with higher percentages of coral powders being used in the experiments. However, excessive coral powders resulted in the reduction of specimen strength because these powders could easily be cemented into agglomerates by absorbing water from the specimens. These agglomerates could reduce the cementation strength between the coarse coral particles and the cement. Meanwhile, the peak stress of CCS specimens was found to be negatively correlated with the average strain rate and the ultimate strain. The degree of specimen fracture was found to be correlated with the amount of specific energy absorption during the tests. Furthermore, the “sulfate attack” caused by the inclusion of salinity of water had different influences on the CCS specimens with different coral powder contents. The ettringite and gypsum produced in “sulfate attack” could fill the pores and lead to cracking of the specimens, significantly affecting the specimen strength.  相似文献   
33.
A series of large scale direct shear experiments is used to investigate the effect of the geomembrane (GMB) surface roughness, geotextile (GTX) properties, and GTX ageing, on the GMB-GTX interface shear behaviour. Interfaces involving smooth, coextruded textured, and structured surface GMBs underlying four different nonwoven needle-punched staple fibres (GTXs) with mass per unit areas between 200 and 2400 g/m2, and a geocomposite drain (GCD) are examined at normal stresses between 250 and 1000 kPa. The results showed that the interlocking between the GMB and GTX increased with increasing the GMB asperity height and/or decreasing the mass per unit area of the GTX. For the interfaces that involved GTXs preaged prior to the shear box experiments for up to 2 years at 85 °C, it was found that the 2400 g/m2 heat bonded two-layered GTX exhibited internal shear failure at low shear displacements. However, all the highly aged single layered GTXs showed an increase in the peak interface friction angles with the increase in their ageing. For these single layered GTX, the results suggest that assessing the interface friction angles using unaged GTXs for the stability analysis is conservative as long as the GTX remains intact in the field.  相似文献   
34.
Some of the main applications of geosynthetics include use as a hydraulic barrier in sanitary landfills, as a reinforcement element and in pavement engineering. In most cases, these materials are subject to the overlapping effects of tensile strength and puncture. This paper presents a review of indirect methods for calculation of stress and strain averages by means of the California Bearing Ratio (CBR) puncture strength test. In addition, a new calculation method is proposed based on the Kirchhoff plate theory, which interprets the behavior of thin circular plates subjected to a uniform normal loading. This new method enables analysis of the stress-strain in each stretch of the geosynthetic. The methodology is applied to four woven geotextiles of different weights. The results of the new calculation method yielded a better stress-strain correlation with direct tensile strength tests, presenting the smallest relative errors compared to the other indirect calculations reviewed. With the aid of a disk and pins, vertical displacement values at different points in the geotextiles were measured and showed good agreement with analytical predictions. Therefore, the static puncture test combined with the new proposed calculation method is a good alternative for determining the stress-strain parameters of geotextile.  相似文献   
35.
Soil column is often investigated in the improvement of dredged slurries. Different from the smear zone, the soil column forms gradually and has extremely low permeability. This study presents an analytical solution for soil consolidation considering the increasing radius of the soil column and time-dependent discharge capacity. Based on the solution, the influence of the radius' increase on the consolidation behavior is found significant when the soil column has low permeability and large final radius, and the increase of formation time can lead to the increase of consolidation speed and final consolidation degree.  相似文献   
36.
The freeze–thaw cycling damages the soil structure, and the shear performance of soil are degraded. A series of tests on lime–soil(L–S) and fiber–lime–soil(F–L–S), including freeze–thaw test, the triaxial compression test, nuclear magnetic resonance (NMR) test and scanning electron microscope (SEM) test, were completed. The test results showed that fiber reinforcement changed the stress–strain behavior and failure pattern of soil. The cohesion and internal friction angle of soil gradually decreased with the increase of freeze–thaw cycles (F–T cycles). The pore radius and porosity of soil increased, while the micro pore volume decreased, and the small pore volume, medium pore volume and large pore volume increased, and the large pore volume had a little variation after 10 F–T cycles. The number of pores of F–L–S was less than L–S, demonstrating that the addition of fiber helped to reduce the pore volume. The interweaved fibers limited the development and the connection of cracks. By means of the spatial restraint effect of fiber on the soil and the friction action between fiber and soil, the shear performances and freeze–thaw durability of F–L–S better were than that of L–S.  相似文献   
37.
This paper presents a field-scale experimental track over a poor subgrade with an unreinforced section and a geocell-reinforced section subjected to in-situ performance tests. Plate load tests and Benkelman beam tests were carried out distributed in several unreinforced and reinforced layers. The objective was to: (1) examine the variability of the elastic modulus of unbound granular material (UGM) due the influence of its thickness and the presence of poor subgrade in its base, (2) evaluate the modulus improvement factor (MIF) generated by the geocell reinforcement in the UGM and (3) verify the most appropriate condition to apply the MIF to transport infrastructure design. The results showed that there is a significant influence of the thickness of the UGM layer on its elastic modulus when the layer is supported directly over a soft subgrade. The MIF values obtained in field suggest that its determination is mostly related to the UGM maximum elastic modulus rather than its decreased values (by virtue of poor subgrade or reduced thicknesses), and that the analytical formulation presented for MIF calculation has good predictive capability to be applied to pavement design.  相似文献   
38.
为了解汉江上游干支流沉积物细菌多样性以及确定性过程和随机性过程在沉积物细菌群落构建过程中的相对重要性,基于Illumina高通量测序技术,分析了环境因子对细菌群落组成的影响,采用非度量多维尺度(NMDS)排序探究了季节之间沉积物细菌群落的差异,并结合中性群落模型和标准化随机率量化了确定性过程和随机过程对群落构建的影响。结果表明:汉江上游及其支流细菌群落主要由变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、蓝藻门(Cyanophyta)、浮霉菌门(Planctomycetes)和酸杆菌门(Acidobacteria)等组成;细菌群落在不同季节有显著差异;地理距离和环境因子对细菌群落结构影响较小,确定性过程并未在细菌群落组成中起到主导作用;随机过程很大程度上影响了群落在秋季和春季的组成,是沉积物细菌群落构建的主导因素。  相似文献   
39.
40.
在建筑物水平掏土纠倾工程中,掏土孔间距是影响纠倾工程安全与工期的重要因素。为了快速准确地确定纠倾工程中的水平掏土孔间距,研究了单个掏土孔和多个掏土孔情况下孔周边土体塑性区发展特性。利用土体塑性力学分析计算得到了单孔下的孔周土塑性区半径,而后通过有限元模拟得到孔周土体塑性区半径的数值解,将孔周塑性区半径解析解与数值解进行了对比。并通过有限元数值模型研究了多个掏土孔相互影响情况下的塑性区发展规律,以孔间土体塑性区贯通时的距离作为掏土孔间距。考虑土体参数随机特性的影响,研究不同上部荷载作用下掏土孔间距的取值变化规律,上部面荷载与地基承载力特征值比值用p表示,孔间距与掏土孔直径比值用n表示。研究发现:多孔塑性区半径(孔间塑性区贯通时)是单孔塑性区半径的1.3倍左右;标准化荷载p与孔间距比值n二者呈线性关系;通过不同土体参数及上部荷载的不同情况下的p-n曲线,给出了掏土孔间距建议值。同时,将研究结果与三个实际工程进行对比,发现p-n曲线法与实际结果更为接近。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号